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Fig. 1: ACE-F enables teleoperation users to complete contact-rich tasks on a wide range of simulated and real-world robots
using an innovative virtual force feedback model and highly simplified mechanical design.

Abstract— Teleoperation systems are essential for efficiently
collecting diverse and high-quality robot demonstration data,
especially for complex, contact-rich tasks. However, current
teleoperation platforms typically lack integrated force feedback,
cross-embodiment generalization, and portable, user-friendly
designs, limiting their practical deployment. To address these
limitations, we introduce ACE-F, a cross embodiment fold-
able teleoperation system with integrated force feedback. Our
approach leverages inverse kinematics (IK) combined with a
carefully designed human-robot interface (HRI), enabling users
to capture precise and high-quality demonstrations effortlessly.
We further propose a generalized soft-controller pipeline inte-
grating PD control and inverse dynamics to ensure robot safety
and precise motion control across diverse robotic embodiments.
Critically, to achieve cross-embodiment generalization of force
feedback without additional sensors, we innovatively interpret
end-effector positional deviations as virtual force signals, which
enhance data collection and enable applications in imitation
learning. Extensive teleoperation experiments confirm that
ACE-F significantly simplifies the control of various robot
embodiments, making dexterous manipulation tasks as intuitive
as operating a computer mouse. The system is open-sourced at:
https://acefoldable.github.io/

I. INTRODUCTION

Teleoperation systems have shown great potential for
collecting high-quality, diverse demonstration data for com-
plex, contact-rich robotic tasks. However, existing plat-
forms have three main limitations: (1) lack of integrated
force feedback—either providing no haptic cues or relying
on expensive, hard-to-integrate force/torque (FT) sensors
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[1], [2]; (2) poor cross-embodiment generalization—joint-
copying schemes must be redesigned for each new robot
morphology [3], [4]; and (3) bulky, non-portable hardware
that hinders rapid deployment in real-world scenarios [4],
[5]. High component costs further complicate these tele-
operation systems, which poses an additional challenge.
To address these problems, we propose ACE-F, a cross-
embodiment foldable teleoperation system with integrated
force feedback. First, ACE-F infers real-time 3-DoF external
forces by monitoring end-effector (EE) trajectory deviations,
no additional sensors required, and applies active gravity
and friction compensation on the leader and follower arms
to deliver smooth, intuitive haptic cues [2], [6]. Second,
we combine IK–based leader-arm control with glove-based
hand tracking to build a universal EE retargeting algorithm
that adapts to diverse robot platforms; a magnetic quick-
swap interface further enables future integration of tactile
gloves [7]–[9]. Finally, our soft-controller pipeline fuses
proportional-derivative (PD) control with custom inverse
dynamics (ID), ensuring stability, responsiveness, and safety
across embodiments, and allowing rapid deployment via
minor tuning of URDF parameters [7]. ACE-F achieves high-
precision demonstrations and maintains affordability and
portability. It demonstrates two clear advantages in experi-
ments: (1) users can rapidly adapt and accurately perform
cross-platform teleoperation tasks under varying precision
and workspace requirements; and (2) at a relatively low
cost, ACE-F significantly outperforms systems without force
feedback in complex contact-rich tasks.

https://acefoldable.github.io/


Fig. 2: Overview of the ACE-F system. Left: Annotated view of the ACE-F arm showing the base joint (1 DoF), perpendicular
elbow joints (2 DoF), and the spherical joint for interchangeable end-effectors. Right: Several representative end-effector
configurations are enabled by the spherical joint.

II. METHOD

ACE-F makes innovations in four primary areas: hardware
design, end-effector control, an augmented IK solver, and
force feedback. The 3-DoF structure minimizes complex-
ity, which simplifies control tasks while providing a wide
range of movement, the IK solver prevents the system
from entering singularities during long-horizon tasks, the
end-effector avoids drift by connecting to the base while
orientations are recorded with an inertial measurement unit
(IMU), and virtual forces are calculated to provide users with
an additional sense for contact-rich tasks.

A. Hardware Design.

The ACE-F system, illustrated in Fig. 2, is a robotic
manipulator designed for precise 3-DoF force feedback. It
features three independent joints: a base joint for foun-
dational rotation and two perpendicular elbow joints for
compact and robust force rendering. The manipulator uses
DYNAMIXEL XM430-W350-R motors with U2D2 con-
trollers, ensuring precise and responsive joint control. At
its endpoint, an exposed ball-joint supports interchangeable
end-effectors via a 3D-printed ball-and-socket design. As an
extra precaution, an elastic safety lock mechanism prevents
unintended detachment during operation. We validated three
end-effector categories: A bare configuration which serves
as a general-purpose setup for force feedback, two gripper
configurations enabling simple gripper actuation, and a glove
configuration tailored for humanoid platforms equipped with
dexterous hands. This modular design significantly enhances
the system’s flexibility and adaptability for diverse real-world
applications.

B. Augmented Inverse Kinematics Solver.

Unlike conventional IK solvers that purely minimize end-
effector position and orientation errors, we propose an aug-
mented IK approach tailored to the unique teleoperation
challenges of over-actuated arms. Our solver introduces two
additional “tasks” to improve robustness and avoid singu-
larities. First, we compute the projection angle of the end-
effector onto the base plane and match it to the first joint

angle of the robot. This ensures a natural alignment between
the direction the operator wants to face and the robot’s base
rotation. Second, to prevent the extra joint in 7-DoF arms
from bending outward when the end effector approaches the
base, an action that can lead to kinematic singularities, we
introduce a soft constraint on the fourth joint. We assign it
a higher target value in the vertical (z) axis, encouraging
a posture that avoids such configurations. These task-level
modifications enhance the solver’s reliability and stability,
allowing intuitive and continuous teleoperation even near the
robot’s kinematic limits.

C. End-Effector Control and Feedback.

One core challenge in teleoperation is achieving full 6-
DoF control (position and orientation) of the robot end-
effector using compact and low-DoF input devices. A 3-DoF
arm alone cannot simultaneously define both the position
and orientation of the end-effector in space. To address
this limitation, ACE-F decouples position and orientation
control: the foldable 3-DoF leader arm is used to determine
the Cartesian position of the end effector, while an IMU
captures the wrist orientation in real time. This can be ex-
panded further to include finger orientations by integrating a
glove-based tracking module. Combining these two streams,
ACE-F reconstructs a complete 6-DoF in-hand pose of the
operator, which can then be retargeted to the robot.

This hybrid control design preserves portability and af-
fordability and enables platform-agnostic retargeting. The
system uses IK to convert the desired position from the
leader arm and the orientation from the glove into robot-
specific end-effector commands. As a result, users can define
both position and rotation of the end-effector naturally within
the workspace, enabling seamless teleoperation across robots
with different kinematic structures.

Additionally, ACE-F incorporates virtual force feedback
by interpreting trajectory deviations between the commanded
and actual end-effector positions as 3-DoF force signals, as
shown in Fig. 3. These inferred forces are rendered on the
leader arm via active torque control, alongside gravity and
friction compensation. This provides intuitive haptic cues



without requiring external sensors, by making contact events
such as collisions, object slippage, or resistance perceptible
to the operator.

ACE-F preserves the flexibility of the original ACE sys-
tem, such as the ability to adapt to different workspace
scales through simple geometric transformations and offers
key advantages in force feedback implementation. By reduc-
ing the leader arm to 3-DoF, ACE-F simplifies mechanical
design and real-time torque control. This reduction makes it
significantly easier to implement reliable, low-latency force
feedback, because the system only needs to estimate and
render 3D translational forces, instead of full 6D wrenches.
Together, these properties enable intuitive and high-fidelity
teleoperation across diverse robotic platforms while main-
taining portability, low cost, and modular expandability.

D. Force Feedback Calculation.

Instead of relying on conventional Jacobian-based wrench-
to-torque mapping for force feedback calculation, we com-
pute the deviation between the follower arm end-effector’s
target and actual positions:

∆ee = target− current

This deviation, ∆ee, serves as the core indicator of
the feedback force magnitude. Traditional wrench-to-torque
mappings can be highly sensitive to transient forces, where
short-duration impulses can result in substantial torque spikes
that destabilize the leader arm. To circumvent this issue,
we introduce a virtual target pose for the leader arm. By
scaling ∆ee and applying it to the leader arm’s current end-
effector pose, the leader arm naturally tries to align with
the follower’s pose via force feedback, as though the two
end-effectors are connected by a virtual spring. Since the
operator’s hand firmly grips the end-effector, this alignment
manifests as tangible forces rather than significant positional
displacements, thereby avoiding large oscillations.

To further prevent destabilizing effects at high speed,
where ∆ee may inflate due to dynamic motion rather than

Fig. 3: ACE-F’s scaled virtual force-feedback control system.

contact, we regulate the feedback magnitude by the fol-
lower’s Cartesian velocity:

Force Feedback Factor =

√
α · ∥∆ee∥2

1 + ∥vcartesian∥2

This ensures that the feedback force remains negligible
during smooth motions, only becoming significant during
actual contact interactions. Additionally, we apply this feed-
back factor not only to generate the virtual target pose
but also to adaptively modulate the leader arm’s impedance
gains (Kp and Kd), implementing stable and intuitive haptic
feedback across tasks.

Algorithm 1 Force Feedback–Enhanced Teleoperation Loop
1: repeat
2: Leader Arm: Compute target eetarget based on op-

erator’s 3-DoF arm pose and glove orientation
3: Leader Arm: Solve IK for qtarget of the follower arm
4: Leader Arm: Send qtarget to follower arm
5: Follower Arm: Send current joint positions qcurrent

to leader
6: Follower Arm: Receive qtarget and start moving

toward it
7: Leader Arm: Compute current follower eecurrent

using forward kinematics (FK) from qcurrent
8: Leader Arm: Compute deviation ∆ee = eetarget −

eecurrent
9: Leader Arm: Compute force feedback factor:

Factor =

√
α · ∥∆ee∥2

1 + ∥vcartesian∥2

10: Leader Arm: Update virtual target pose and
impedance gains Kp, Kd using the force feedback factor

11: until task complete

III. EXPERIMENTS

A. Experiment Design.

ACE-F was evaluated according to its performance con-
trolling a Franka Emika Panda robot and two variations of the
UFactory XArm in virtual and real-world experiments. Ad-
ditional demonstrations were performed with a wide variety
of robot platforms available in the Mujoco based Robosuite
simulator to demonstrate ACE-F’s generalizable nature [10].
Joint-copy methods, like Gello, were used as a baseline to
demonstrate ACE-F’s intuitive design for new users, and
the advantages that the simplified structure provides. Further
testing trained imitation learning models on data collected
using ACE-F with and without force-feedback enabled in
order to highlight tasks in which force feedback is especially
useful.

1) Ablation Study: Before performing the simulated and
real world experiments, we conducted an ablation study to
explore how different substitutions of the velocity term in
the feedback compensation formula impact system stability



and user experience. Specifically, we tested four variations:
absolute value |v|, squared velocity v2, exponential exp(v),
and hyperbolic tangent tanh(v). Table I shows that |v|
produced the lowest high frequency energy ratio (0.123),
lowest maximum local jerk (0.00064), and highest feedback
correlation (0.758), indicating it provides the most stable
and precise force feedback. In contrast, exp(v) introduced
the highest high frequency energy ratio (0.211) and jerk
anomalies (4.59%), suggesting a more aggressive but po-
tentially destabilizing feedback response. tanh(v) and v2

offered intermediate results, with tanh(v) achieving a feed-
back correlation of 0.662 and relatively low jerk anomalies
(0.81%). These findings demonstrate the trade-offs between
stability, responsiveness, and user sensitivity across different
velocity formulations in the feedback term.

2) Baseline Simulation Experiments: First, we compared
ACE-F and Gello on three contact-rich simulations built in
MuJoCo – Box Stacking, Box Dragging, and Table Mopping.
Each task involved varying levels of physical interaction,
visual reasoning, and force modulation, which we could use
to evaluate the two platforms. Two groups of users with
varying levels of teleoperation experience were selected. The
groups began each task using a different system and switched
platforms halfway through the task. Additionally, users were
allowed up to five minutes of practice every time they
switched platform. Practice sessions were conducted in a task
neutral practice arena, which contained elements from each
of the three actual experiments. Users were provided with a
description of their goal before each task and loaded into the
practice scene. Once they reached the end of their practice
time or self-determined that they were ready to begin, they
were given control of a Franka Emika Panda robotic arm
within the scene and allowed to use any combination of force
feedback, visual cues, and tools to complete the task. The
camera position and robot remained the same through all
three tasks.

a) Simulated Box Stacking: Four blocks with random-
ized weights and a balance scale were placed on the table,
and users were asked to determine the relative weight of each
block before stacking them from heaviest to lightest. Users
were graded on four metrics: speed, number of scale uses,
number of times they knocked one or more blocks off their
tower, and whether or not they were successful in stacking
all four blocks in the correct order.

b) Simulated Box Dragging: A singular weighted block
attached to a handle was placed at one end of the table and
an invisible obstacle was randomly placed somewhere on
the other side. Users were asked to use the handle to drag
the block across the table until they reached the obstacle,
at which point their goal was to release it without crossing
over the line. They were allowed to use any combination of
force feedback and visual cues available in the simulation
and were graded on three metrics: speed, distance from the
obstacle, and whether or not they were successful in stopping
the box before it crossed the line.

c) Simulated Table Mopping: Users were tasked with
dragging the robot’s end-effector back and forth along a

Fig. 4: Overview of the six tasks in the evaluation suite: real-
world mopping, real-world can stacking, real-world blind can
insertion, simulated table mopping (left-right and forward-
backward), simulated box stacking, and simulated box drag-
ging.

line on a table from one edge to the other, while trying to
maintain steady speed and pressure. This task was performed
on two table configurations – one where the line went from
left to right, and one where the line went from close to
far. Users were graded on their speed and force consistency,
defined as the variation in normal forces experienced by the
table in the simulation.

3) Baseline Real-World Experiments: Next, ACE-F and
Gello were evaluated on the following real-world tasks: Can
Stacking, Marker Erasing, and Hidden Insertion. Users were
once again allowed up to five minutes of practice every time
they switched platform, and practice sessions were conducted
in the same environment where the tests took place.

a) Real Can Stacking: Similar to the simulated stacking
scene, this experiment consisted of three randomly placed
weighted cans and a digital balance scale. Users were in-
structed to determine the relative weight of each can before
stacking them from heaviest to lightest. Users were graded on
four metrics: speed, number of scale uses, number of times
they knocked one or more cans off their tower, and whether
or not they were successful in stacking all three cans in the
correct order.

b) Real Marker Erasing: Similar to the simulated mop-
ping scene, this experiment consisted of a raised platform
holding a textured ceramic dish with a 2-inch by 2-inch
square of dry-erase marker. Users were instructed to use a
whiteboard eraser to remove the visible markings from the
plate. Users were graded on three metrics: speed, the number
of times they triggered the robot’s built-in safety features,
and whether or not they were successful in removing all of
the marker from the plate.

c) Real Blind Can Insertion: This task was performed
exclusively in the real-world using a rectangular box with a
randomized hole position. It was placed behind a cardboard
screen to obscure part of the robot operator’s vision of the
task space. Users were instructed to pick up a can from the



TABLE I: Teleoperation Stability Metrics for Different Velocity Transformations

Feedback Param High Freq. Energy Ratio Max Local Jerk Leader-only Jerk Anomaly (%) Feedback Correlation

|v| 0.123 0.00064 0.00 0.758
v2 0.132 0.00219 0.39 0.521
exp(v) 0.211 0.00273 4.59 0.686
tanh(v) 0.131 0.00139 0.81 0.662

TABLE II: Aggregate simulation performance across three
teleoperation tasks. ACE-F demonstrates advantages over
Gello in every task.

Virtual Stacking Task

Method Avg. Time (s) Avg. Scale Uses Success Rate (%)
ACE-F 102.1 ± 27.2 0.7 ± 0.5 90.0
Gello 187.0 ± 121.2 2.3 ± 0.7 70.0

Virtual Box Dragging Task

Method Avg. Time (s) Light Status Success Rate (%)
ACE-F 16.7 ± 2.5 On 100
ACE-F 16.4 ± 2.5 Off 94.4
Gello 21.9 ± 4.8 On 75.0

Virtual Mopping Task: Left-Right

Method Normal Force Max/Avg. Force Ratio
ACE-F 196.8 ± 55.9 4.59
Gello 231.9 ± 69.6 7.19

Virtual Mopping Task: Forward-Backward

Method Normal Force Max/Avg. Force Ratio
ACE-F 229.0 ± 146.8 7.19
Gello 251.7 ± 183.1 9.73

visible portion of the table and place it into a hole located
behind the cardboard screen. Users were graded on their
speed, the number of times they triggered Franka’s built-in
safety features, and whether or not they successfully placed
the can into the hole.

4) Simulated Model Comparisons: The rest of the simula-
tions were conducted in the Robosuite simulator, using their
lifting, stacking, and wiping benchmark task environments
[10]. Lifting consisted of grabbing and lifting a randomly
positioned and oriented block, stacking required the policy to
place a small block onto a larger block, and wiping required
the policy to use the end-effector to remove a streak from
a table surface. Each model was trained using two camera
views and qpos data obtained from Robosuite over the course
of 50 demonstrations. The lifting and wiping tasks were
performed with a Franka Emika robot, and the stacking
task used a UFactory Xarm7. Each task policy was trained
once with force feedback enabled and once without it in
order to evaluate its importance. The results of the first 20
task attempts were recorded while the demonstrations were
collected as an additional performance metric. Importantly,
data was collected without an intermediate motion planner,
explaining the slightly below average task performance.

5) Real-World Model Comparisons: Real-world policy
deployments were performed on a Franka Emika Panda
robot. Similar to the simulated examples, the policy was
trained with two camera views and qpos data collected by

TABLE III: Aggregate real-world performance across three
teleoperation tasks. ACE-F consistently outperforms the
joint-copy Gello method in success rate and stability, while
reducing reliance on external tools like scales.

Real Stacking Task

Method Avg. Time (s) Avg. Scale Uses Success Rate (%)
ACE 90.81 ± 17.97 0.0 ± 0.00 83.3
Gello 88.36 ± 23.46 2.0 ± 0.63 66.7

Real Erasing Task

Method Avg. Time (s) # Safety Warnings Success Rate (%)
ACE 26.54 ± 7.89 0 100.0
Gello 22.13 ± 4.30 1 100.0

Real Blind Can Insertion Task

Method Avg. Time (s) Success Rate (%)
ACE 43.26 ± 20.87 100.0
Gello 34.42 ± 12.30 50.0

a human operator with force feedback enabled. Franka was
trained to sort a random series of cans into three slots in
increasing size. It was trained on 18 episodes containing
three examples of each starting combination of cans.

B. Experimental Results.

1) Baseline Simulation Experiments:
a) Simulated Box Stacking: ACE-F demonstrated a

clear advantage over Gello in speed, number of scale uses,
number of tower topples (labeled as blunders in Table II), and
success rate. ACE-F testers able to complete the stacking task
54.62% faster than Gello users with far more consistency (a
quarter the standard deviation). Additionally, ACE-F users
were 28.57% more successful, despite using the scale less
than half as much as Gello users. Since ACE-F allows users
to feel the weight of the cube without having to rely on
the scale, users spent less time weighing each block, so
they could limit their motions to a smaller area of the task
space. The reduced motion and ACE-F’s additional sense of
touch explains why ACE-F users made fewer blunders during
stacking.

b) Simulated Box Dragging: ACE-F performed signif-
icantly better than Gello in the box dragging task, where it
was 23.72% faster, even without vision for the latter half of
the task. It was also far more successful, only failing the
task in 5.6% of the blind tasks, compared with Gello’s 25%
failure rate with the lights on. This test highlights ACE-F’s
advantages in tasks where tactile feedback can make up for
visual cues.

c) Simulated Table Mopping: ACE-F outperformed
Gello in both configurations of the mopping task, as well.



By providing the user with an even force when the arm
collides with the table, the users could sense how much
force they were applying and more easily regulate their
downward pressure. This is clearly indicated by a 36.16%
smaller maximum force to average force ratio in the left-
right configuration and a 41.86% smaller ratio in the forward-
backward test.

2) Baseline Real-World Experiments:
a) Real Can Stacking: Gello performed the can stack-

ing task faster on average, however it had a larger standard
deviation in completion times and a lower success rate.
This can be attributed to two things: the platform’s unstable
configuration and the increased movements associated with
moving cans to the scale. ACE-F users did not have to use the
scale in any of their trials because they could feel the can’s
weight purely through force feedback. Thus, they could avoid
making large movements over to the scale, which was more
likely shake the can loose from its gripper. Similarly, Gello’s
structure makes it difficult for the user to keep the gripper
perfectly upright, which contributed to the cans falling from
its grasp more frequently. If the can landed in an awkward
orientation, it could roll outside of the robot’s workspace,
causing it to immediately fail.

b) Real Marker Erasing: Both ACE-F and Gello had
a 100% success rate in this task, however Gello performed
16.62% faster than ACE-F on average and had a smaller
standard deviation in its times. This is partially due to the
fact that Gello is joint-copy, and thus users can quickly move
multiple joints at their maximum speeds simultaneously. This
accelerated their performance but also triggered a warning in
Franka’s safety system during one of the tasks.

c) Real Blind Can Insertion: ACE-F performed sig-
nificantly better than Gello in this task because the force
feedback allowed users to compensate for their poor vision
by feeling around inside the box. Gello users generally
completed this task faster, however they possessed a much
lower success rate of 50%, while ACE-F users correctly
identified the can’s target location 100% of the time.

3) Simulated Model Experiments:
a) Simulated Lifting Policy: ACE-F performed compa-

rably with and without force feedback during data collection,
however users were slightly faster with force feedback en-
abled, likely because they could use the collision with the
table as an indicator of when to close the gripper. Surpris-
ingly, the force-enabled policy performed significantly better
than the force-disabled policy. One possible reason is that
the actions recorded in the force-enabled dataset were far
more consistent than those in other training data, leading to
a higher policy confidence.

b) Simulated Stacking Policy: Force feedback provided
a large advantage in the stacking task demonstrations because
it served as a depth indicator to users in both the pick and
place portions of the task. This corresponds with higher
success rates in the trained policy, though the overall values
are slightly below average without an intermediate motion
planner. In this case, full successes required successful
completion of both pick and place actions, and

TABLE IV: Imitation learning policy performance across
three teleoperation tasks. ACE-F with force feedback (FF)
demonstrates advantages over ACE-F without FF in every
task.

Data Collection

Task Environment Success Rate
(%)

Avg. Time (s)

FF Lift Simulation 96.0 7.0 ± 0.7
Regular Lift Simulation 96.0 8.9 ± 1.3

FF Stack Simulation 95.8 9.5 ± 1.0
Regular Stack Simulation 72.0 9.9 ± 1.5

FF Wipe Simulation 100.0 6.9 ± 1.8
Regular Wipe Simulation 76.0 10.1 ± 3.1

Policy Evaluation

Task Environment Full Success
Rate (%)

Partial Success
Rate (%)

FF Lift Simulation 95.0 N/A
Regular Lift Simulation 60.0 N/A

FF Stack Simulation 52.6 44.4
Regular Stack Simulation 30.0 21.4

FF Wipe Simulation 75.0 N/A
Regular Wipe Simulation 65.0 N/A

FF Can Sort Real-World 66.7 75.0

Fig. 5: Overview of all four imitation learning policies:
simulated lifting, simulated stacking, simulated wiping, and
real-world can sorting.

partial successes were counted when the robot successfully
picked up the block but could not place it.

c) Simulated Wiping Policy: The wiping task showed
the largest improvements when completed with force feed-
back because users were able to regulate how much force
they applied to the table. This prevented users from pressing
into the table so hard that the second to last arm joint
buckled and triggered a joint limit error, which was the
primary failure method in this task. The force-enabled policy
also performed better than its peer but to a smaller degree.
Notably, both policies exhibited the highest failure rates near
the edges of the randomized task space, likely due to out-
of-distribution states.

4) Real-World Model Experiments:



a) Real Sorting Policy: This task successfully trained
a policy in the real-world, and although it does not have
a baseline comparison without force feedback, the data
in previous sections implies that the advantages of force
feedback would carry over. Stopping short of making this
claim, however, this test demonstrates that ACE-F can collect
high-quality data in the real-world.

IV. RELATED WORK

A. Force Feedback Teleoperation.

Force feedback has become a widely recognized enabler
for contact-rich teleoperation, allowing operators to per-
ceive interaction forces and improve manipulation perfor-
mance [11]–[13]. Although many commercial robot arms
incorporate 6-DoF FT sensors, their high cost and integra-
tion complexity make them impractical for general deploy-
ment [14]. Furthermore, the majority of low-cost teleopera-
tion systems forgo force feedback entirely, relying solely on
position or joint commands with no haptic cues [7], [15]–
[17]. Traditional force-feedback teleoperation implementa-
tions therefore depend on external FT sensors mounted on
the follower device, imposing hardware and calibration bur-
dens [18]–[20]. Virtual force feedback schemes approximate
contact forces via kinematic or impedance models, but cannot
fully capture true interaction dynamics [21]. Some teleopera-
tion systems have also attempted to convey force information
through non-haptic channels—e.g., visual overlays on the
video stream, audio alerts, or controller vibration cues—but
these indirect modalities often lack intuitiveness and can
increase operator cognitive load [12]. To overcome these
limitations, ACE-F infers real-time 3-DoF end-effector forces
from trajectory deviations, providing sufficiently accurate
force cues for daily-life teleoperation tasks without any
additional sensors.

B. Cross-Embodiment Teleoperation.

Mapping human motions to robots with differing kine-
matic structures is necessary for proper teleoperation [3].
Direct joint-copying approaches build a small leader arm
or mobile controller that mirrors the target robot’s kine-
matics, providing intuitive, low-latency mapping, but require
rebuilding the hardware for each new robot [15]–[17], [19],
[20], [22]. In contrast, IK-based Cartesian control naturally
generalizes across embodiments, allowing a single leader
interface to drive robots of varied morphologies without any
hardware changes [5], [7], [23]–[28]. IK-driven teleoperation
systems typically use four main interfaces to obtain wrist and
hand pose: motion-capture devices [29]–[33], cameras [23],
VR equipment [24], [34]–[40], or exoskeleton hardware [5],
[7], [41]–[46]. The first three approaches can capture com-
plete wrist and hand information to enable dexterous end-
effector control [23], [26], [47]–[49], but their interfaces
make integrating force feedback difficult. Exoskeleton-based
systems offer a direct way to add force feedback, yet their
bulky size and mechanical complexity significantly increase
torque requirements—raising motor costs and reducing wear-
ability. By contrast, ACE-F combines a compact, foldable

3-DoF leader arm with glove-based hand tracking to achieve
precise, occlusion-free full-hand pose capture while minimiz-
ing device volume and torque demands—thereby lowering
motor performance requirements and overall system cost, and
enabling seamless integration of tactile gloves in the future.

V. DISCUSSION

ACE-F displayed clear advantages over joint-copy meth-
ods, like Gello, when compared in virtual and real-world
environments. It performed better in most tasks because its
inverse-kinematic controller removes the burden of moni-
toring the robot’s configuration from the operator and the
force-feedback from the inverse-dynamics controller gives
the user an extra sense, which improved environmental
awareness. Additionally, by reducing the complexity of the
overall system, ACE-F remains very compact and portable.
The sensor-less force feedback also enables users to complete
tasks in new domains, where the user has limited vision of
their workspace. This solves one of the major drawbacks
of joint-copy methods and results in a surprise benefit by
limiting user speed through resistance forces, which reduces
the likelihood of the user triggering speed-based warnings.
Lastly, imitation learning models trained on data from ACE-
F demonstrated clear improvements from the implementation
of force feedback in simulation, and the same pipeline can
be applied to data collection for real-world policies. ACE-
F comes with its own drawbacks, however. For instance,
better motors could supply stronger feedback to the user, and
this project prioritizes low-cost teleoperation over full 6-DoF
force feedback, since cartesian forces are generally consid-
ered sufficient for most tasks. That leaves a gap in the scope
of the project, which can be improved in future releases.
Future works should focus on expanding the implementation
of the gloves and incorporating torque feedback for the user
in addition to the cartesian forces currently provided.
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